

Energizing Healthcare at Gundersen Lutheran

What footprint will we leave behind?

Why Should a Healthcare System Think About Energy / Environment?

- Pollutants from the burning of fossil fuels cause cancer, liver disease, kidney disease, and reproductive issues.
- According to the D.O.E., hospitals are 2.5 times more energy intensive than other commercial buildings.*
 - This is inconsistent with our mission...we are responsible for contributing to disease through our wasteful consumption.
- Energy costs continue to escalate, making it more difficult to provide affordable care.
- Reducing waste results in an improved bottom line.

Gundersen

Gundersen Lutheran is committed to environmental stewardship and energy management programs that promote a healthy environment for our patients, their families, our employees, and the communities we serve. We are dedicated to solutions that make <u>environmental and economic sense</u>, creating a healthier environment and lowering healthcare costs.

The Cost of Energy \$5M Spend in 2007

>\$350,000 Increase Annually for Gundersen Lutheran

The need for affordable healthcare compels us to address this trend

Our <u>En</u>vision Program

Energy Management

- Energy Efficiency
 - 30% reduction vs. 2007 baseline by December 2010
- Renewable Energy
 - Plan for 100% renewable production has been developed
- Recycling

Waste Management and Control

 Comprehensive Waste Management System to include pharmaceutical waste best practice program

Sustainable Design of New Facilities

Gundersen Lutheran's Vision for Energy and Environmental Stewardship

Energy Conservation

- Best leverage of resources
 - Many conservation measures have paybacks < 2 years
- Immediate benefits to gain momentum
- Reduces the amount spent for renewable energy supply
- Stewardship gains credibility with stakeholders

Metrics & Baselines

The Value of Commissioning

Gundersen Lutheran

Retrocommissioning

Retrocommissioning examines heating and cooling systems, lighting systems and employee behavior to identify opportunities to reduce energy demand. Low-cost or no-cost Energy Control Measures (ECMs) are then implemented to improve efficiency.

Use only the energy you need, when you need it, where you need it...no more.

Audits & Project Lists

*		Cost 🖛		Annual Saving 👻	Pauback -	Categor -	kWh saved 👻	Therm save 🖛			
Chilled water pump halancing value	\$		4	297	Immediate	Betro	4 950				
Chiller/Tower Ontimization	1 Å			13 354	Immediate	Betro	222 567				
Exhaust fan scheduling	1 Å		13	4 286	Immediate	Betro	71431	2			
Zone scheduling (Unoccumu)/ â// boyes/slow down âHi /s - phase 1 easu - internal rooms)	1 Å			18 535	Immediate	Betro	308.910	2			
	1.		13	25 5 25	Immediate	Petro	414.960				
Chiller/Tower Optimization	1.	0.455		15 790	0.5	Retro	262 167				
Chiller/Tower Optimization		50 000		> 15,130	2.2	Retro	422,200				
Chile/Tower Optimization	1.*	50,000	13	5 20,002 5 7 EH	0.0	Betra	105,200				
Chillen/Tower Optimization		5,660	Ľ	5 7,011 5 0.000	0.0	Betra	120,100				
Content Tower Optimization		14,550	1.	2,200 01E00	0.0	Betra	20,133				
Zone schedding (onoccupy VAV boxesrsiow down Arro's - phase 2 - lobblesmailwaysrexterior rooms)				21,000	ninieulate 0.1	Betra	303,474	ŕ			
ALU este adule e	*	2,215		5 21,004	U.I	Bette	200,000				
Ano scheduling		1050		5 12,017 5 11,017	ninieulate 0.1	Bette	200,021	r			
Condenser water acid reed	\$	1,208	1	6 II,037	0.1	Retro	30,667				
Enthalpy Control, Static Fan Pressure		155 000 0		5 5,000		Hetro	83,333	57.400			
Reducing station for HP bollers & Boller Economizers	\$	100,326.0		6 49,433	3.1	Energy Capital	00.000	57,480			
Shut off one of the hot water motors (22shut off regire motor too 22)		50 700		F 2,000	5.0	Hetro	33,333				
Energy envicent lighting system	\$	56,702		6 9,690	5.9	Energy Capital	161,000				
Steam Iraps	\$	125,550		35,590	3.5	Energy Capital		41,384			
Lomestic Hot Water - Heaters	\$	18,411	1	\$ 500	36.8	Infrastructure					
Upgrade boiler controls & VEU drives	ų\$.	125,675.0	1	14,454	8.7	Energy Capital		16,807			
Caulk	\$	3,250		5 1,000		Hetro		1,163			
Steam Traps	\$	104,592		6,280	16.7	Energy Capital		7,302			
Domestic Hot Water VFD pumps & Controls	\$	5,715		5 1,689	3.4	Hetro	28,144				
Steam Traps	Ι.	Incl in East		Incl in East		Energy Capital					
Steam Traps	1.'	ncl in Hospital	Ι.	Incl in Hos							
AHU 38, 39, 21, 4, 5, & Phase II Hijdronic Heating Controls	\$	76,718	1	5							
Condenser water acid feed	\$	10,720	Ľ								
Condenser water acid feed	\$	4,951		6							
Domestic Hot Water - Controls	\$	3,240	1	·							
Domestic Hot Water - Controls	\$	1,950	1	t	Project						
Controls	\$	121,200									
Controls	\$	228,110	1	Est	Establish enforce new temp range guidelines to support						
Replace OA Damper AHU 5	\$	4,850	1	Shu	Shut down / reduce regional site signage and/or parking I						
Controls	\$	161,325		Hot	Hot Water Scheduling upgrades, design better than curr						
Energy efficient lighting system	\$	277,049		E lie	Eliminate hat water heiler Founders, bring over from Den						
Energy efficient lighting system	\$	124,812			Eliminate not water boller-Founders, bring over from Don						
Energy efficient lighting system	\$	59,758		Dec	Decrease pressure in HP boilers						
Energy efficient lighting system	\$	253,470	1	Hea	Heat recovery off of our boiler stacks ORC?						
AHU scheduling				Fini	Finish scheduling areas in LaCrosse that have not been						
AHU scheduling		744 470	1	Cor	nost stoor	loon on Lo	Crosse Compu				
Energy erricient lighting system	\$	711,173			mett steam	HOOP OF La	crosse Campu				
Chiller replacement	\$	500,000		Inst	all motion s	ensors for li	gnts in offices a	nd cont. Roo			
Domestic Hot water - Controls	\$	3,525	Ľ	Ligh Ligh	Lighting controls where needed (i.e. region too)						
AHU scheduling				Rel	amp region:	al clinics an	d smaller buildir	as with retro			
Exhaust fan scheduling				Alto	motive beet	course for	regional alipiaa	(color booting			
Exhaust fan scheduling				Alle	mauve near	source for	regional clinics	(solar neating			
Vacuum pump	\$	3,500	1	Rep	lace hospit	ai AHU-1 &	heat recovery w	neel			
HP boiler scheduling Ultherent opportunity now with using reducing station			Ι.	Wit	With older regional clinics, audit insulation and suppleme						
Exhaust fan scheduling				Mor	e VAV's roo	ims in existi	na buildinas				
Exhaust fan scheduling		050 000	1		on Emerge	anov gonera	tore to cupriem	ont electrical			
Heat Wheel	\$	350,000	14	Use	Use on Emergency generators to supplement electrical l						
Other to Free days		000 000			Natural gas stand by generators (load shed)						
Steam to Founders	\$	200,000		Nat	ural gas sta	nd by gener	ators (load she	d) (t			

Energy Conservation Project Priority Matrix												
	Project Name											
Establi	sh enforce new temp range quidelines to support energy efficiency (non-patient areas)	9	1	9	132							
Shut d	own / reduce regional site signage and/or parking lot lights	3	9	9	120							
Hot Wa	ater Scheduling, upgrades, design better than current (Hx Pneum/DDC Clinic) underway	9	3	3	120							
Elimina	te hot water boiler-Founders, bring over from Domestic East Building	9	3	3	120							
Decrea	ase pressure in HP boilers	3	9	9	120							
Heat re	covery off of our boiler stacks ORC?	9	3	3	120							
Finish	scheduling areas in LaCrosse that have not been addressed (i.e. LaX clinic, Foundation, GBB)	3	9	9	120							
Conne	ct steam loop on LaCrosse Campus	9	3	3	120							
Install r	notion sensors for lights in offices and conf. Rooms (analyze appropriate)	9	1	3	108							
Lightin	g controls where needed (i.e. region too)	9	1	3	108							
Relam	p regional clinics and smaller buildings with retrofit lighting	9	1	3	108							
Alterna	tive heat source for regional clinics (solar heating, new furnace, gshp, wood?)	9	1	3	108							
Replac	e hospital AHU-1 & heat recovery wheel	9	1	3	108							
With o	der regional clinics, audit insulation and supplement with additional insulation as needed	9	1	3	108							
More V	AV's rooms in existing buildings	9	1	3	108							
Use on	Emergency generators to supplement electrical load and turn over fuel	9	1	1	100							
Natura	gas stand by generators (load shed)	9	1	1	100							
Elevato	n Analysis	1	9	9	100							
Sweate	er day turn down heat (non-patient care areas)	1	9	9	100							
Add Bi	omass Boiler	9	1	1	100							
Sell the	e old Viroqua Clinic so we don't have to heat it	1	9	9	100							
Meters		3	9	3	96							
Dayligh	t harvesting (East, Clinic, Hospital Lobby, SSB, Stukins, Onal. Clinic, new Regional clinics)	3	3	9	84							
Establi	sh appliance policy / control plan to limit personal appliance use (i.e. space heaters, fridges, etc.)	3	3	9	84							
Unocci	upied individual rooms HVAC during day when not occupied (GLMF)	3	3	9	84							
Ceiling	fans in high ceilings (Distribution ctr., laundry, power plant, lobbies)	1	9	3	76							
Develo	p specs. (for old stuff too) For motors and other energy using equipment (i.e., Haworth lighting, etc.)	3	1	9	72							
LED lig	hting on outside signage (regional sites)	3	3	3	60							
LED lig	hting for parking lots or reduce during certain hours	3	3	3	60							
Night li	ght retrofit in the hospital (dimmer switch?)	3	3	3	60							
Upgrad	le older / non-efficient kitchen equipment	3	3	3	60							
Replac	e exhaust hood kitchen ventilation control	3	3	3	60							
Install \	/FD's on hospital chilled water pumps	3	3	3	60							
Install (differential pressure valves on chilled water distribution	3	3	3	60							
Reduc	e lighting at AVS warehouse	3	3	3	60							
Unocci	upied HVAC & lighting / coordinate with cleaning staff	3	3	3	60							

Unoccupied HVAC & lighting / coordinate with cleaning staff

Validating Results

Gundersen

Renewable Energy Supply

- Proven technologies exist today
- Investment mentality
 - Expect 5 -15 year paybacks for many projects
 - Hedge against inflation
 - Highly variable depending upon project specific parameters
 - Feasibility studies recommended
 - Significant tax incentives exist for those who qualify
 - Renewable Energy Credits add financial value
- Great opportunity to form mutually beneficial partnerships

We will always need to consume some energy to fulfill our mission. Clean, renewable sources of energy can offset this consumption.

Implemented Energy Benefit

- ~ 25% offset through conservation achieved by 12/31/09
 - 10,000,000 kWh
 - 40,000,000 cu. ft.
 - \$1,250,000 annualized benefit

Sustainable Design of New Facilities

- Underground Parking Ramp
 - Solar photovoltaic, paint on concrete, green space, etc
 - LEED Certified
- Stukins Building
 - Renovated a building that dated back to late 1800's
 - 90% diversion rate of construction waste
 - Recycled lumber for paneling
 - Rain garden for storm runoff
- Critical Care Tower in design
 - 115 KBTU/sqft Energy Goal
 - Geothermal

Why isn't everyone doing this?

- Financial
 - Energy is typically 1-2% of a hospital's budget
 - Energy competes with other mission-critical investments
 - Little to no documented results for value on some technologies
 - Difficult to verify results of implemented improvements
 - Grants/Incentives
 - Nonprofits
 - Can not use tax incentives
 - Can not enjoy depreciation expense tax benefits on capital investments
 - Are excluded in many federal stimulus grants (ARRA)
 - Hospitals and Universities consume a great deal of heat energy which is not incented as strongly as electricity projects
 - Some competitive grants are focused on large scale projects beyond the capacity of smaller organizations

Why isn't everyone doing this?

- Personnel (especially smaller and rural hospitals)
 - Not a lot of engineers or technical people
 - Limited training on energy efficiency or renewable energy
 - Need to maintain the comfort
 - Communicating payback to decision-makers
 - Personnel don't know what to ask the suppliers
 - Personnel don't know how to sell to leadership
 - Personnel don't sit in the same meetings

Why isn't everyone doing this?

- Buildings
 - Checkerboard construction/disconnected systems
 - Brand new buildings connected to 100+ year old buildings
 - Equipment and controls that span as well
 - Aesthetics
 - Many codes/regulations
 - Infection control, Indoor Air Quality
 - Limited onsite renewable opportunities
 - Larger renewable energy projects take years
 - Untapped sustainable opportunities
 - Waste Heat Recovery
 - Combined Heat and Power
 - Energy security

Jeff Rich

Executive Director Major Projects and Efficiency Improvement Gundersen Lutheran Health System

E-mail: jjrich@gundluth.org Phone: (608) 775-6970 Executive assistant: Jean Hougom, (608) 775-6329

Jeff Rich joined Gundersen Lutheran Health System in October 2006 to lead the department of Major Projects and Efficiency Improvement. As the executive director, his major responsibilities include project identification, project delivery and coaching of project leaders on process improvement. Jeff facilitates project reviews and helps manage the project portfolio to achieve Gundersen Lutheran's strategic and operational goals. In this work, Jeff utilizes Lean-Six Sigma tools and partners with other leaders to direct change. Jeff was previously employed as the director of Customer Satisfaction and Six Sigma for Trane's Global Marketing Division. During his 10-year career with Trane, he also held a variety of quality engineering, Lean-Six Sigma and

engineering management positions. Jeff was also employed for six years with the John Deere Waterloo Works Drive Train Division as an industrial engineer and quality engineer. Jeff holds a Bachelor of Science in Mechanical Engineering and is a certified Lean-Six Sigma black belt and master black belt. He is also a senior member of the American Society for Quality (ASQ) and an ASQ-certified quality engineer.

Corey Zarecki Efficiency Improvement Leader Gundersen Lutheran Health System

E-mailı çizareck@gundluth.org Phone: (608) 775-0148 Senior office assistantı Shari Krause (608) 775-2780

Corey Zarecki's primary responsibility is to develop, manage and coordinate the energy efficiency and renewable energy projects for Gundersen Lutheran Health System. He also initiates and leads business solutions and process improvement.

HEALTH SYSTEM

Corey joined Gundersen Lutheran in March 2008 as an efficiency improvement leader. He was previously employed as the director of Customer Satisfaction and Six Sigma for Trane Commercial Systems. During his eight-year career with Trane, he also held positions of Six Sigma-Lean leader and certified Six Sigma-Lean master black belt driving business solutions through process improvement philosophies. He served as a teacher and mentor to hundreds of peers around the world. Prior to his work at Trane, Corey held a number of engineering and leadership roles at several chemical companies.

Corey received a Bachelor of Science in Chemical Engineering from the University of Wisconsin-Madison and holds a patent for high density printed circuit substrate and method of fabrication.