Anatomy & Physiology Course Objectives

These educational objectives are taken from the 2009 Release of the United Stated Department of Transportation (US DOT) National Highway Traffic Safety Administration (NHTSA) National Emergency Medical Services Education Standards- Paramedic Instructional Guidelines.

The educational objectives may be met through a separate course offering or in conjunction with the Paramedic program and incorporated into the lesson plan. The instructor for this material must have at a minimum an Associate Degree and have successfully completed at least two college semesters of anatomy and physiology.

The North Carolina Office of Emergency Medical Services has determined some North Carolina Community College curriculum course offerings will meet or exceed the requirements as listed within the Anatomy and Physiology Course Objectives.

Acceptable equivalents are as follow:
- EMS 3000 (Basic Anatomy and Physiology)
- BIO 163 (Basic Anatomy and Physiology)
- BIO 165 & BIO 166 (Anatomy and Physiology I & II)
- BIO 168 & BIO 169 (Anatomy and Physiology I & II)
Anatomy & Physiology Course Objectives

The intent of these educational objectives are to integrate a complex depth and comprehensive breadth of knowledge of the anatomy and physiology of all human systems.

OBJECTIVES:

I. Anatomical Terms

A. Anatomy
B. Physiology
C. Pathophysiology
D. Homeostasis
E. Specific body parts and areas
 1. Axillary
 2. Brachial
 3. Buccal
 4. Cardiac
 5. Cervical
 6. Cranial
 7. Cutaneous
 8. Deltoid
 9. Femoral
 10. Gastric
 11. Gluteal
 12. Hepatic
 13. Inguinal
 14. Lumbar
 15. Mammary
 16. Nasal
 17. Occipital
 18. Orbital
 19. Parietal
 20. Patellar
 21. Pectoral
 22. Perineal
 23. Planter
 24. Popliteal
 25. Pulmonary
 26. Renal
 27. Sacral
 28. Temporal
 29. Umbilical
 30. Volar
II. Planes and sections of the body
 A. Frontal (coronal) Plane
 B. Sagittal Plane
 C. Midsagittal Plane
 D. Transverse Plane
 E. Cross-Section
 F. Longitudinal Section

III. Anatomical Topography
 A. Abdominal Quadrants and Regions
 1. Abdominal quadrants
 a. Right upper quadrant (RUQ)
 b. Left upper quadrant (LUQ)
 c. Right lower quadrant (RLQ)
 d. Left lower quadrant (LLQ)
 2. Abdominal regions
 a. Right hypochondriac
 b. Epigastric
 c. Left hypochondriac
 d. Right lumbar
 e. Umbilical
 f. Left lumbar
 g. Right iliac
 h. Hypogastric
 i. Left iliac

IV. Organ Systems
 A. Skeletal
 B. Muscular
 C. Respiratory
 D. Circulatory
 E. Nervous
 F. Integumentary
 G. Digestive
 H. Endocrine
 I. Renal
 J. Reproductive
 K. Lymphatic System and Immune System

V. Anatomic Cavities
 A. Dorsal
 1. Cranial cavity
 2. Spinal cavity
 B. Ventral
 1. Thoracic cavity
2. Abdominal cavity
3. Pelvic cavity

VI. Organization
 A. Atomic Level
 1. Matter,
 2. Element
 3. Atom
 4. Proton
 5. Neutron
 6. Electron
 7. Bonding
 a. Ionic
 b. Covalent
 c. Hydrogen bonds
 8. Chemical reactions
 a. Synthesis
 b. Decomposition
 B. Chemical Level
 1. Carbohydrates
 a. Monosaccharides
 b. Disaccharides
 c. Oligosaccharides
 d. Polysaccharides
 e. Starches
 f. Glycogen
 g. Cellulose
 h. Fiber
 2. Lipids
 a. True fats
 b. Triglycerides
 c. Phospholipids
 d. Steroids
 3. Proteins
 a. Amino acids
 b. Peptide bonds
 c. Polypeptide
 4. Enzymes -- Active Site Theory
 5. Nucleic acids
 a. DNA
 b. RNA
 c. ATP
 6. Trace Elements

VII. Cell Structure and Function
 A. Cell Theory
B. Cellular Anatomy and Physiology
 1. Cell membrane
 2. Cytoplasm
 3. Nucleus and chromosomes
 4. Organelles
 a. Mitochondria
 b. Lysosomes
 c. Golgi apparatus
 d. Ribosomes
 e. Endoplasmic reticulum
C. Cellular Respiration
 1. Aerobic
 2. Anaerobic
D. Cellular Environment
 1. Water compartments
 a. Intracellular (ICF)
 b. Extracellular (ECF)
 i. plasma
 ii. lymph
 iii. interstitial fluid
 iv. specialized fluids
 a) synovial
 b) cerebrospinal
 c) aqueous humor
 2. Isotonic
 3. Hypotonic
 4. Hypertonic
 5. Acid and base
 a. pH scale
 i. Base
 ii. Acid
 b. Normal pH ranges of body fluids
 c. Buffer system
E. Cellular Transport Mechanisms
 1. Diffusion
 2. Osmosis
 3. Facilitated diffusion
 4. Active transport
 5. Filtration
 6. Phagocytosis
 7. Pinocytosis
F. Cell Division
1. Mitosis
2. Meiosis
 a. Genetic code
 b. Protein synthesis
 c. Differentiation
 d. DNA fingerprinting
3. Mutations

VIII. Tissue Level of Organization and Membranes
 A. Epithelial tissue
 1. Simple squamous
 2. Stratified squamous
 3. Transitional
 4. Simple cuboidal
 5. Simple columnar
 6. Ciliated
 B. Connective tissue
 1. Blood
 2. Areolar
 3. Adipose
 4. Fibrous
 5. Elastic
 6. Bone
 7. Cartilage
 C. Muscle tissue
 1. Smooth
 2. Skeletal
 3. Cardiac
 D. Neural tissue
 E. Membranes
 1. Pleura
 2. Pericardial
 3. Peritoneum-mesentery
 4. Specialized connective tissue
 a. Superficial fascia
 b. Periosteum
 c. Perichondrium
 d. Synovial
 e. Deep fascia
 f. Meninges
 g. Fibrous pericardium

IX. Skeletal System
 A. Functions
 B. Classification of bones
1. Long bones
 a. Diaphysis
 b. Epiphysis
 c. Marrow canal
 d. Yellow bone marrow
2. Short bones
3. Flat bones
4. Irregular bones
5. Joint surfaces
 a. Articular cartilage
 b. Periosteum

C. Embryonic skeleton maturation
1. Bone matrix
2. Osteoblasts
3. Ossification – the production of bone matrix
4. Fontanels
5. Epiphyseal discs
6. Osteoclasts
7. Marrow canal

D. Bone growth and maintenance
1. Heredity
2. Nutrition
3. Hormones
4. Exercise – stress

E. Hormones involved in bone growth and maintenance
1. Growth Hormone
2. Thyroxine
3. Insulin
4. Parathyroid hormone
5. Calcitonin
6. Estrogen
7. Testosterone

F. Major subdivision of the skeleton
1. Axial skeleton
2. Appendicular skeleton

G. Components
1. Skull
 a. Cranial bones
 i. frontal
 ii. temporal
 iii. occipital
 iv. sphenoid
 v. ethmoid
 b. Sutures
c. Facial bones
 i. mandible
 ii. condyloid joint
 iii. maxillae

d. Paranasal sinuses and ciliated epithelium

e. Mastoid sinuses

f. Auditory bones

2. Vertebral column
 a. Vertebrae
 b. Cervical vertebrae
 i. atlas
 ii. pivot joint
 iii. axis
 c. Thoracic vertebrae
 d. Lumbar vertebrae
 e. Sacrum
 f. Sacroiliac joints
 g. Coccyx

3. Vertebral canal
 a. Discs
 b. Symphysis joints

4. Rib cage
 a. 12 pairs of ribs
 b. Sternum
 c. Manubrium
 d. Body
 e. Xiphoid process
 f. True ribs
 g. False ribs
 h. Floating ribs

5. Shoulder and Arm
 a. Scapula
 b. Clavicle
 c. Humerus
 d. Radius
 e. Ulna
 f. Carpals
 g. Metacarpals
 h. Phalanges

6. Hip and Leg
 a. Hip bones
 b. Ilium
c. Ischium
d. Pubis
e. Pubic bones
f. Pubic symphysis
g. Acetabulum
h. Femur
i. Patella
j. Tibia
k. Fibula
l. Tarsals
m. Calcaneus
n. Talus
o. Metatarsals
p. Phalanges

H. Classification of Joints
1. Synathrosis (immovable)
2. Amphiarthrosis (slightly movable)
3. Diarthrosis (freely movable)

I. Types of Joints
1. Gliding joints
2. Hinge joints
3. Pivot joints
4. Ball and socket joints
5. Saddle joints
6. Symphysis

J. Synovial Joints
1. Articular cartilage
2. Joint capsule
3. Synovial membrane
4. Synovial fluid
5. Bursae

X. Muscular System
A. Gross Anatomy
1. Muscle fibers
2. Tendons
3. Fascia
4. Periosteum
5. Origin
6. Insertion

B. Microscopic Anatomy
1. Myofibrils
2. Myosin
3. Actin
4. Titin
5. Troponin
6. Tropomyosin
7. Sarcoplasmic reticulum

C. Actions of Muscles
1. Flexion
2. Extension
3. Adduction
4. Abduction
5. Pronation
6. Supination
7. Dorsiflexion
8. Plantar flexion
9. Rotation

D. Contraction of a Skeletal Muscle Fiber
1. Nerve Impulse
 a. Polarization
 b. Depolarization
 c. Repolarization
 d. Action potential
2. Neuromuscular junction and functions
 a. Axon terminal
 b. Synapse
3. Structure of the sarcomere
4. Sliding filament theory of muscle contraction and function
 a. Acetylcholine
 b. Calcium ions
 c. Myosin and actin
 d. Troponin and tropomyosin
 e. Cholinesterase
5. Energy sources for muscle contraction
 a. ATP
 b. Creatinine phosphate
 c. Creatinine
 d. Glycogen
 e. Glucose
6. Hemoglobin, myoglobin, oxygen debt, lactic acid, and recovery oxygen uptake
7. Aerobic and anaerobic endurance and the relationship to muscle movement

E. Major Muscles of the Body
1. Antagonistic
2. Synergistic
XI. Respiratory System

A. General Function of the Respiratory System
 1. Upper respiratory tract
 2. Lower respiratory tract

B. Structure and Functions of the Nasal Cavities and Pharynx
 1. Nasal cavities
 a. Nose
 b. Nasal cavities
 c. Nasal septum
 d. Nasal mucosa
 e. Olfactory receptors
 f. Paranasal sinuses
 2. Pharynx
 a. Nasopharynx
 b. Soft palate
 c. Oropharynx
 d. Laryngopharynx

C. Structure and Function of the Larynx and the Speaking Mechanism
 1. Voice box
 2. Thyroid cartilage
 3. Epiglottis
 4. Vocal cords
 5. Glottis

D. Structure and Functions of the Trachea and Bronchial Tree
 1. Trachea
 2. Primary bronchi
 3. Bronchial tree
 4. Right and left main-stem bronchi
 5. Bronchioles

E. Lungs
 1. Location and function
 2. Pleural membranes
 a. Parietal pleura
 b. Visceral pleura
 c. Serous fluid
 3. Hilus

F. Structure and Function of the Alveoli and Pulmonary Capillaries
 1. Surfactant

G. Mechanism of Breathing
 1. Mechanical ventilation
 a. Mechanism of inhalation
 i. Inspiration
 ii. Phrenic nerve
iii. intercostal nerves
iv. respiration
v. ventilation/perfusion disturbance
vi. diaphragm
vii. external intercostal muscles
viii. internal intercostal muscles
ix. pressures

b. Changes in air pressure that occur within the thoracic cavity during respiration
 iv. atmospheric
 v. intrapleural
 vi. intrapulmonic

c. Role of the visceral and parietal pleura in respiration
d. Mechanics of exhalation

H. Explain the Diffusion of Gases in External and Internal Respiration
I. Discuss Pulmonary Volumes
 1. Tidal volume
 2. Minute respiratory volume (MRV)
 3. Inspiratory reserve volume
 4. Expiratory reserve volume
 5. Vital capacity
 6. Residual air volume

J. Physiological Dead Space and Lung Compliance
K. Oxygen and Carbon Dioxide Transport in the Blood
L. Nervous and Chemical Mechanisms That Regulate Respiration
M. Respiration Affect on pH of Certain Body Fluids
N. Respiration and Acid-Base Balance
 1. Respiratory acidosis and alkalosis
 2. Metabolic acidosis and alkalosis

XII. Circulatory
A. Blood
 1. Composition and function of blood
 2. Composition and function of blood plasma
 a. Amount
 b. Color
 c. pH
 d. Viscosity
 e. Plasma
 i. plasma proteins
 ii. prothrombin
 iii. fibrinogen
 iv. albumin
 v. globulins
 3. Primary hemopoietic tissue
4. Function of red blood cells
5. Nutrients necessary for red blood cell production
6. Function of the following
 a. Stem cells
 b. Hemocytoblasts
 c. Normoblasts
 d. Reticulocyte
 e.
7. Red blood cell production in hypoxic state
8. Red blood cell and hemoglobin destruction
9. ABO group and Rh factor blood types
10. Types and function of white blood cells (leukocytes)
 a. Neutrophils
 b. Eosinophils
 c. Basophils
 d. Lymphocytes
 e. Monocytes
11. Platelets role in hemostasis
 a. Vascular spasm
 b. Platelet plugs
 c. Chemical clotting
12. Three stages of chemical blood clotting
13. Normal values in a complete blood count

B. The Heart
1. Location and features of the heart
 a. Mediastinum
 b. Pericardial membranes
 c. Fibrous pericardium
 d. Parietal pericardium
 e. Epicardium
2. Chambers of the heart
 a. Myocardium
 b. Endocardium
 c. Right and left atria
 d. Right and left ventricles
3. Valves of the heart and their function
 a. Tricuspid valve
 b. Bicuspid valve (mitral valve)
 c. Aortic valve
 d. Pulmonary semilunar valve
4. Cardiac cycle
5. Creation of heart sounds
 a. Papillary muscles
 b. Chordae tendinae
6. Coronary arteries
a. Coronary circulation
7. Major blood vessels
8. Cardiac conduction pathway and its relationship to a normal electrocardiogram
 a. Pacemaker cells
 b. Conduction cells
9. Stroke volume, cardiac output, and Starling’s law of the heart
10. Nervous system regulation of the function of the heart

C. Blood Vessels and Circulation
1. Structure and function of the blood vessels, arteries, veins and capillaries
2. Arterial and venous anastomosis
3. Structure of capillaries
4. Exchange of gases that occurs at the capillary level
5. Mechanism that regulate blood flow through arteries, capillaries, and veins
6. Pathway and purpose of the pulmonary circulation
7. Pathway of the systemic circulation
8. Pathway and purpose of the hepatic portal circulation
9. Fetal circulation
10. Branches of the Aorta and their distributions
11. Major systemic arteries and the parts of the body they nourish
12. Major systemic veins and the parts of the body they drain of blood
13. Hemodynamics
 a. Blood pressure
 i. venous return
 ii. pulse pressure
 iii. peripheral resistance
 b. Factors that maintain systemic blood pressure
 i. heart rate and force of contraction
 ii. vessel elasticity
 iii. blood viscosity
 iv. hormones
 v. peripheral resistance
 c. Osmosis
 d. Diffusion
 e. Facilitated diffusion
 f. Active Transport
 g. Hydrostatic pressure
 h. Oncotic pressure
14. Regulation of blood pressure by the heart and kidneys
15. Medulla and autonomic nervous system regulation of the diameter of the blood vessels
16. Coordination of the cardiac, vasomotor, and respiratory centers to control blood flow through the tissues
XIII. Nervous System

A. Basic Components

1. Neuron
 a. Axon
 b. Dendrites
 c. Myelin sheath
 d. Neurolemma
 e. Microglia
 f. Astrocytes
 g. Schwann cells
 h. Neuroglia

2. Type of neurons
 a. Sensory
 b. Motor
 c. Interneurons

3. Nerves and Tracts
 a. Sensory nerves
 b. Motor nerves
 c. Mixed nerve
 d. Nerve tract (white matter)

4. Nerve Impulse
 a. Membrane potential and the conduction of an action potential
 i. Polarization
 ii. Depolarization
 iii. Impulse transmission
 iv. Salutatory conduction
 b. Impulse transmission at synapses

B. Central Nervous System

1. Function of the spinal cord

2. Spinal nerves and function

3. Spinal cord reflexes
 a. Stretch reflexes
 b. Reflex arc
 c. Flexor reflexes

4. Parts of the brain
 a. Ventricles
 b. Medulla
 c. Pons midbrain
 d. Cerebellum
 e. Hypothalamus
 f. Thalamus
 g. Cerebrum
 h. Frontal lobes
 i. Parietal lobes
Anatomy and Physiology Course Objectives

C. Peripheral Nervous System
1. Cranial nerves and function
 a. Olfactory nerves
 b. Optic nerves
 c. Oculomotor nerves
 d. Trochlear nerves
 e. Trigeminal nerves
 f. Abducens nerves
 g. Facial nerves
 h. Vestibulocochlear nerves
 i. Glossopharyngeal nerves
 j. Vagus nerves
 k. Accessory nerves
 l. Hypoglossal nerves
2. Distribution pattern of spinal nerves
3. Sensory and motor pathways
 a. Sensory pathways
 i. posterior column pathway
 ii. spinothalamic pathway
 iii. spinocerebellar pathway
 b. Motor pathways
 i. pyramidal system
 ii. extrapyramidal system
4. Sympathetic division of the autonomic nervous system
5. Parasympathetic division of the autonomic nervous system
6. Effects of the sympathetic and parasympathetic divisions of the ANS on various organs of the body
 a. Eyes
 b. Skin
 c. Cardiovascular system
 d. Adrenal glands
 e. Respiratory system
 f. Digestive system
 g. Skeletal muscles
 h. Urinary system
 i. Reproductive system
D. Sensory Function

1. General purposes of sensations

2. General sense and the special senses
 a. General senses
 i. pain
 ii. temperature
 iii. touch, pressure, position
 iv. chemical detection
 b. Special senses
 i. smell
 ii. taste
 iii. vision
 iv. hearing
 v. balance

3. Parts of the sensory pathway and the general functions of each
 a. Receptors
 b. Sensory neurons
 c. Sensory tracts
 d. Sensory areas

4. Characteristics of sensations
 a. Projection
 i. phantom pain
 b. Intensity
 c. Contrast
 d. Adaptation
 e. After-image

5. Characteristics of cutaneous senses
 a. Free nerve endings
 b. Encapsulated nerve endings
 c. Neuropathy

6. Referred pain

7. Importance of proprioception or muscle sense

8. Pathways for the sense of taste
 a. Taste buds
 b. Chemoreceptors
 c. Transmission via the facial and glossopharyngeal nerves

9. Pathways for the sense of Smell
 a. Olfaction chemoreceptors
 b. Olfactory cranial nerves

10. Sensation of hunger and thirst
 a. Visceral sensations
 b. Hypothalamus receptors
 c. Water to salt proportion
11. Components of the eye and function
 a. Vision receptors
 b. Refracting system
 c. Eyelids
 d. Lacrimal apparatus
 e. Conjunctiva
 i. conjunctivitis
 f. Lacrimal glands
 i. tears
 ii. lysozome enzyme
 g. Lacrimal sac
 h. Nasolacrimal duct
 i. Eyeball
 i. orbit
 ii. extrinsic muscles
 iii. layers of the eyeball
 a) sclera
 b) cornea
 c) choroid layer
 d) ciliary body
 e) suspensory ligaments
 f) iris
 g) pupil
 h) lens
 i) cataracts
 i) retina
 j) rods
 k) macula area
 l) macula lutea
 m) fovea
 n) ganglion neurons
 o) optic disc
 iv. cavities
 a) posterior cavity – vitreous humor
 b) anterior cavity
 i) aqueous humor–glaucoma
 ii) canal of Schlemm
 v. physiology of vision
 a) refraction
 i) nearsightedness – myopia
 ii) farsightedness – hyperopia & presbyopia
 iii) astigmatism
 iv) strabismus
 v) amblyopia
 b) rods and rhodopsin
c) cones and color blindness

d) optic nerve

e) optic chiasma

f) occipital lobes of cerebral cortex
 i) binocular vision

j. Components and function of the ear
 i. outer ear
 a) auricle – pinna
 b) ear canal

 ii. middle ear
 a) eardrum – tympanic membrane
 b) malleus
 c) incus
 d) stapes
 e) oval window
 f) eustachian tube

 iii. inner ear
 a) bony labyrinth
 b) membranous labyrinth
 c) perilymph
 d) endolymph
 e) cochlea
 i) medial canal
 ii) organ of Corti
 iii) round window
 iv) utricle and saccule
 (a) otoliths
 v) Semicircular canals
 f) process of hearing, vibration transmission and nerve impulse generation
 i) deafness
 (a) conduction deafness
 (b) nerve deafness
 (c) central deafness

 g) physiology of equilibrium

iv. proprioception

v. arterial pressoreceptors and chemoreceptors

XIV. Integumentary System
A. General Functions of the Integumentary System
B. Layers and Functions of the Skin
 1. Epidermis
 2. Dermis
 3. Subcutaneous tissue
C. Additional Skin Structures:
 1. Stratum corneum
 2. Stratum germinativum
 3. Melanocytes
 4. Melanin

D. Cutaneous Senses

E. Other Structures and Function
 1. Hair
 2. Nails
 3. Sebaceous glands
 4. Ceruminous glands
 5. Eccrine sweat glands

F. Dermal Arterioles Response to Heat, Cold and Stress

G. Structure and Function of Subcutaneous Tissue

H. Skin Response to Injury and Repair Process

I. Effects of the Aging Process on the Skin

XV. Digestive System
 A. General Function of the Digestive System and the Major Divisions
 1. Alimentary tube
 2. Accessory organs
 B. Accessory Organs of Digestion
 C. Mechanical and Chemical Digestion
 D. Structure and Function of the Teeth and Tongue
 E. Function of Saliva
 F. Location and Function of the Pharynx and Esophagus
 G. Mechanical and Chemical Breakdown of Food in the Mouth
 H. Mechanics of Swallowing
 I. Location, Structure, and Function of the Stomach, Small intestine, Liver, Gallbladder, and Pancreas
 J. Four Layers of the Alimentary Canal
 1. Mucosa
 2. Submucosa
 3. External muscle layer
 4. Serosa
 K. Absorption in the Large and Small Intestine
 L. Function of the Normal Flora in the Colon
 M. Peristalsis and Chime

XVI. Endocrine System
 A. Function of the Endocrine System
 B. Endocrine and Exocrine Glands
 C. Endocrine Glands and the Hormones Secreted
 1. Prostaglandin
 2. Target organs
3. Target tissue

D. Chemistry of Hormones
1. Amines
2. Proteins
3. Steroids

E. Regulation of Hormone Secretion
1. Positive and negative feedback mechanisms

F. Pituitary Gland
1. Posterior pituitary gland
 a. Antidiuretic hormone (ADH)
 b. Osmoreceptors
 c. Oxytocin

G. Anterior Pituitary Gland
1. Growth Hormone (GH)
2. Thyroid-stimulating hormone (TSH)
3. Adrenocorticotrophic Hormone (ACTH)
4. Prolactin
5. Follicle-stimulating hormone (FSH)
6. Luteinizing hormone (LH)

H. Thyroid Gland
1. Thyroxine (T4)
 a. goiter
 b. cretinism
 c. myxedema
 d. Graves’ disease
2. Triiodothyronine (T3)
3. Calcitonin

I. Parathyroid hormone (PTH) and calcitonin

J. Pancreas
1. Islets of Langerhans
 a. Alpha cells
 b. Beta cells
 c. Delta cells
2. Insulin
 a. Diabetes mellitus
 b. Hyperglycemia
 c. Hypoglycemia
3. Glucagon
4. Somatostatin

K. Relationship Between Insulin and Glucagon

L. Prostaglandins

M. Adrenal Glands
1. Adrenal medulla
 a. epinephrine
 b. norepinephrine
2. Adrenal Cortex
a. Mineralocorticoids
 i. aldosterone
 ii. rennin-angiotensin mechanism
b. Glucocorticoids
 i. cortisol
 a) gluconeogenesis
 b) anti-inflammatory effects -- histamine
c. Sex hormones
 i. estrogen
 ii. progesterone
 iii. inhibin
 iv. testosterone
d. Diseases of the adrenal cortex
 i. Addison’s disease
 ii. Cushing’s syndrome

N. How Protein Hormones and Steroid Hormones Exert Their Effects
O. Coordinated Physiological Responses Controlled by Hormones
P. Hormones That Are Especially Important to Normal Growth and Development

XVII. Renal System
A. Location and General Function of Each Organ in the Urinary System
B. Components of a Nephron and the Associated Blood Vessels
C. Process of Urine Formation
 1. Glomerular filtration,
 2. Tubular reabsorption
 3. Tubular secretion
 4. Kidney blood flow
D. Kidneys Function in Maintaining Normal Blood Volume and Pressure
E. Kidneys Maintenance of Normal Blood pH and Electrolyte Balance
F. Hormones That Affect Kidney Function
 1. Aldosterone
 2. Atrial natriuretic peptide (ANP)
 3. Antidiuretic hormone (ADH)
 4. Parathyroid hormone (PTH)
G. Urination Reflex and Voluntary Control
H. Characteristics of Normal Urine
 1. Amount
 2. Color
 3. Specific gravity
 4. pH
 5. constituents
 6. nitrogenous wastes
I. Water Compartments
J. Water Movement Between the Compartments
K. Water Entry and Exit in the Body
L. Water and Electrolyte Distribution in the Body
M. Basic Concepts Involved in the Control of Fluid and Electrolyte Regulation
N. Buffering Systems That Balance the pH of the Intracellular and Extracellular Fluids

XVIII. Reproductive System
A. Define the Following:
 1. Diploid
 2. Haploid
 3. Gamates
 4. Endometrium
 5. Genetic disease
 6. Homologous chromosomes
 7. Autosomes
 8. Sex chromosomes
 9. Genes
 10. Alleles
 11. Genotype
 12. Phenotype
 13. Homozygous
 14. Heterozygous
B. Spermatogenesis and Oogenesis
C. Hormones Necessary for the Formation of Gamates
D. Essential and Accessory Reproductive Organs of the Male and Female
E. Structures That Constitute External Genitals in Both Sexes
F. Parts of the Sperm Cell
G. Life Cycle of an Oocyte
H. Menstrual Cycle in Terms of Changes in Hormone Levels and the Condition of the Endometrium
I. Major Developmental Changes During Gestation
J. Function and Structure of the Placenta and Umbilical Cord
K. Fetal Circulation/Respiration
L. Average Gestation Period
M. Stages of Labor
N. Physiologic Changes in Infant After Birth

XIX. Lymphatic and Immune System
A. Major Components and Functions of the Lymphatic System
B. Formation of Lymph Fluid
C. Lymph Vessels and Return to the Blood
D. Location and Function of Lymph Nodes and the Spleen
E. Lymphocytes
F. Immunity
 1. Antigens
 2. Antibodies
G. Innate Immunity
 1. Defensive cells
a. Natural killer cells (NK cells)
b. Basophils
c. Mast cells
d. Phagocytes
e. Langerhans cells

2. Chemical defenses
 a. Interferons
 b. Complement
 c. Inflammation
 d. Fever

H. Adaptive Immunity
 1. Cell-mediated
 2. Antibody mediated

I. Thymus
 1. Stem cells
 2. T lymphocytes – T cells

J. Humoral immunity and Cell Mediated Immunity
K. Development and Function of B Cells and T Cells
L. Acquired Immunity and Genetic Immunity
M. Vaccinations
N. Classifications of Microorganisms
O. Distribution of and Benefits of Normal Flora
P. Infectious Disease
 1. Methods by which infectious diseases are spread

XX. Nutrition, Metabolism and Body Temperature

A. Normal Range of Body Temperature
B. Homeostatic Mechanisms That Maintain a Constant Body Temperature
C. Metabolism, Catabolism, Anabolism, Basal Metabolic Rate, Kilo-Calories
D. Methods Heat is Generated and Lost in the Body
 1. Thyroxine
 2. Sympathetic stimulation
 3. Respiration
 4. Skeletal muscles
 5. Liver
 6. Food

E. Fever
 1. Cause
 2. Advantages
 3. Disadvantages

F. Hypothalamus Function as the Thermostat in the Body

G. Cell Respiration
 1. Byproducts
 2. Disposal of byproducts

H. Cellular Metabolism
 1. Metabolic roles of fats, glucose, and proteins
2. Synthesis uses for glucose, amino acids and fats
3. Metabolic rate and kilocalories
4. Factors that affect metabolic rate

I. Functions of Vitamins, Minerals, and Other Important Nutrients
1. Basic food groups
2. Minerals, vitamins and water
3. Significance of caloric value of foods